

Data Sheet SHF C981 A

Tunable Filter

Description

The SHF C981 A is a RoHS compliant tunable filter with frequency detection. It detects the dominant frequency and automatically sets a narrow bandpass filter to clean the incoming signal.

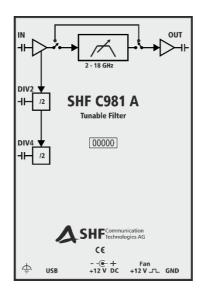
If the incoming signal frequency is out of range of the filter bank, a built-in bypass path is selected, therefore the SHF C981 A is useable up to 65 GHz.

This makes the SHF C981 A an ideal "clock cleaner" e.g., for triggering sampling oscilloscopes.

Features

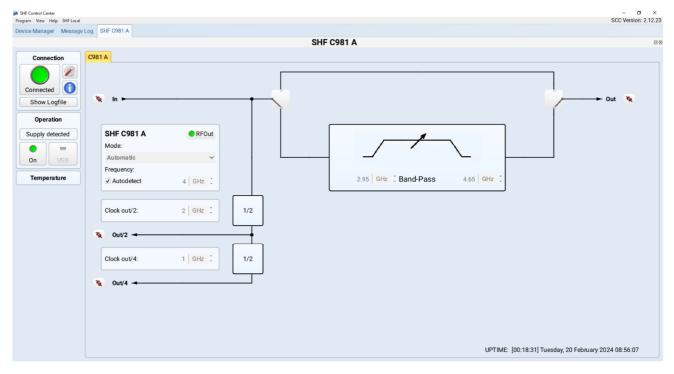
- Automatic filter bank between 2 GHz 18 GHz
- Frequency detection between 4 GHz 60 GHz¹
- Bypass function from 0.1 GHz up to 65 GHz
- Filter bandwidth of typ. 1/6 of center frequency with a band stop suppression up to. 50 dB
- Useable divided by 2 and divided by 4 outputs for further clock distribution

Accessories


In addition to the module itself, the following parts are complementary and parts of each delivery.

- +12 V Power Supply Desktop Adapter
- Heat-Sink (mounted to the device)
- Functional Earth Cable
- Mini-USB cable

¹ For frequencies below 4 GHz and above 60 GHz, a manual input within the SHF Control Center GUI is required



Block Diagram

Ease of Use

- Only a single 12 V supply (complementary part of the delivery) is needed for operation.
- Upon delivery, the SHF C981 A is ready to use, without any further configuration.
- The SHF C981 A can be controlled by intuitive graphical user interface (SHF Control Center) via USB.

SCC GUI

Specifications

Absolute Maximum Ratings

Parameter	Unit	Symbol	Min	Тур	Max	Comment
Input Power	dBm	Pin			10	
External DC Voltage on RF Ports	٧	V_{dc}	-6		6	

Electrical Characteristics (At 35°C case temperature, unless otherwise specified)

Parameter	Unit	Symbol	Min	Тур	Max	Comment
Input Power	dBm	P _{in}	-9		0	
Useable Frequency Range	GHz	f	0.1		65	
Filter Range	GHz	f	2		18	
Frequency Detection	GHz	f	4		60	
Clock /2	GHz	f	2		30	See ²
Clock /4	GHz	f	1		15	See ²
Amplitude Clock /2	mV_{pp}	A _{c2}	400		1000	See ³
Amplitude Clock /4	mV_{pp}	A _{c4}	600		1000	See ³
Filter Bandwidth	MHz	f_{bw}		Fc/6		Fc = Center frequency
Band Stop Rejection	dBc			30		
Signal Gain	dB	G	-1		4	Up to 50 GHz. For further information see Page 7
Settling Time	ms	Т		20		
Maximum Gain during Frequency Switching	dB	G _{max}			10	
Psat	dBm	P _{sat}			18	
RMS Jitter	fs	J_{rms}				See ⁴
Duty Cycle	%	DuCy				See ⁴

 $^{^{\}rm 2}$ Above 60 GHz and below 4 GHz the divider stages may produce signals with random frequency

 $^{^{\}scriptsize 3}$ Does not depend on Input Power, decreases with increasing frequency

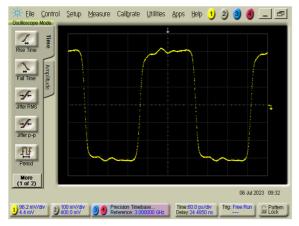
 $^{^{\}rm 4}\,$ No Signal degradation in Jitter or duty Cycle were observed for sin or square wave signals

Power requirements

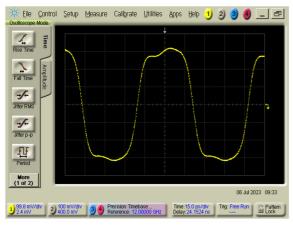
Parameter	Unit	Symbol	Min	Тур	Max	Conditions
Supply Voltage	٧	Vin	11.75	12	12.25	2 mm x 5.9 mm Power Jack
Supply Current	mA	lin		1000		
Power Dissipation	W	P _{diss}		12		

Mechanical Characteristics

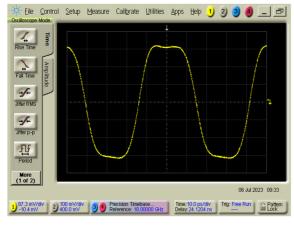
Parameter	Unit	Symbol	Min	Тур	Max	Conditions
Input Connector						1.85 mm (V) female ⁵
Output Connector						1.85 mm (V) female ³
Input/2 Connector						2.92 mm (K) female ³
Input/4 Connector						2.92 mm (K) female ³
Dimensions	mm					see pages 10 & 11
Weight	g			180 480		W/o Heatsink With Heatsink and Fan

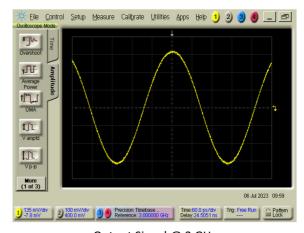

Other connector types, e.g. 2.92 mm (K) or Mini-SMP (GPPO®) connectors, are also available but may impact the bandwidth and reflection characteristic.

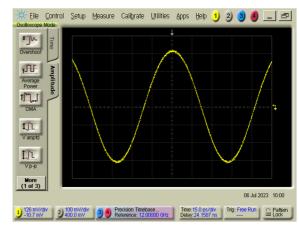
 $^{^5 \! \}text{Other gender configurations are available on request.}$

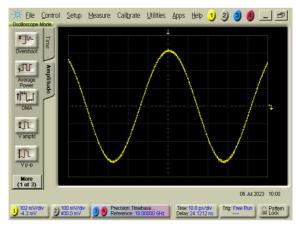


Output Filtered Waveform


The measurements below had been performed using a signal generator (Anritsu MG3697C), SHF C991 A (clock distribution) and a DCA (Agilent 86100D) with a Precision Time Base (Agilent 86107A). The output of the SHF C981 A had been connected directly to the DCA input.

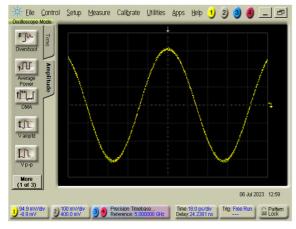

Input Signal @ 3 GHz


Input Signal @ 12 GHz

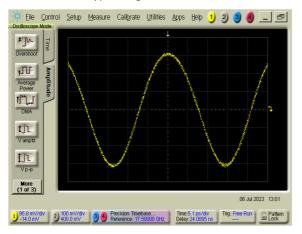

Input Signal @ 18 GHz

Output Signal @ 3 GHz

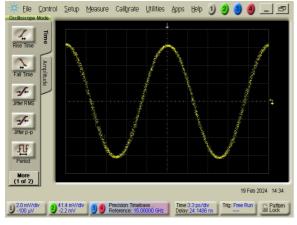
Output Signal @ 12 GHz

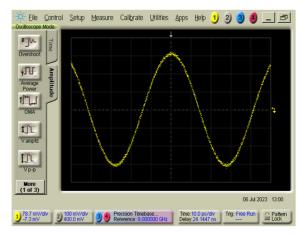


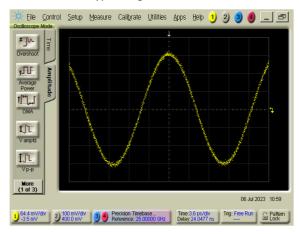
Output Signal @ 18 GHz

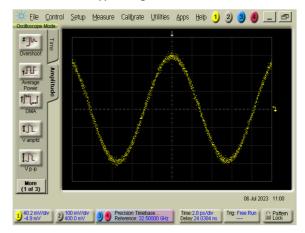


Typical Bypass Waveform


The measurements below had been performed using a signal generator (Anritsu MG3697C), SHF C991 A (clock distribution) and a DCA (Agilent 86100D) with a Precision Time Base (Agilent 86107A). The output of the SHF C981 A had been connected directly to the DCA input. The Phase reference was clocked by the /2 Output of SHF C981 A.

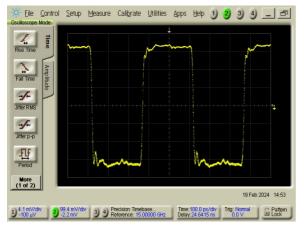

Bypass Signal @ 10 GHz


Bypass Signal @ 35 GHz


Bypass Signal @ 60 GHz

Bypass Signal @ 18 GHz

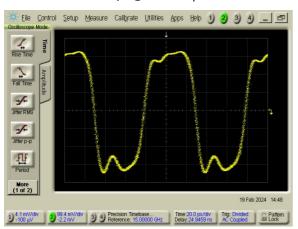
Bypass Signal @ 40 GHz

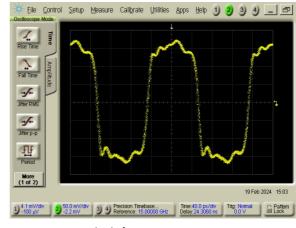


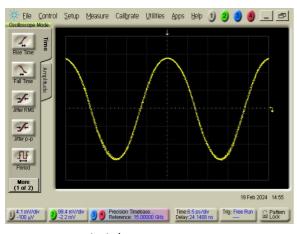
Bypass Signal @ 65 GHz

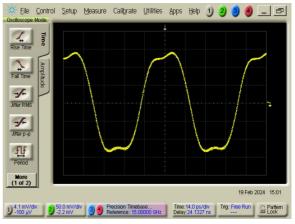


Typical Clock Divider Waveform


The measurements below had been performed using a signal generator (Anritsu MG3697C) and a DCA (Agilent 86100D) with a Precision Time Base (Agilent 86107A). The output of the SHF C981 A had been connected directly to the DCA input. The Phase reference was clocked by the /4 Output of SHF C981 A.

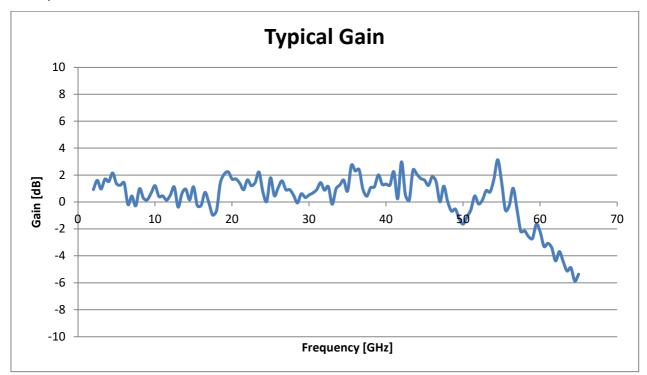

Clock /2 @ 4 GHz Input


Clock /4 @ 4 GHz Input

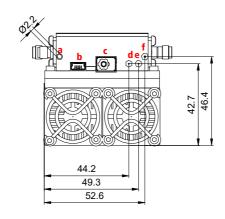

Clock /2 @ 20 GHz Input

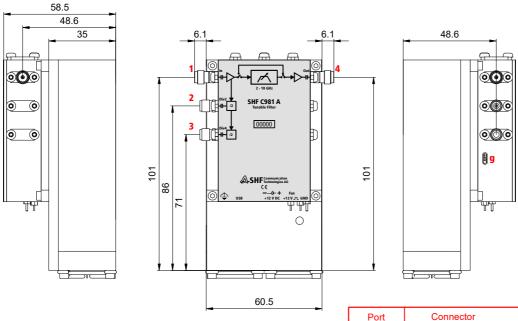
Clock /4 @ 20 GHz Input

Clock /2 @ 60 GHz Input



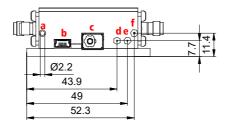
Clock /4 @ 60 GHz Input

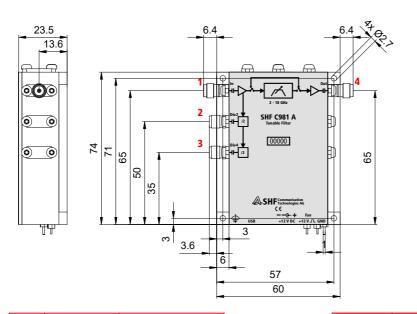

Typical Gain

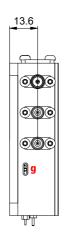

The following diagram shows the typical input to output gain in normal operation. Between 2 GHz and 18 GHz the output is filtered.

Mechanical Drawing with Heat Sink

Pos	Port	Connector
1	ln	1.85mm (V) female
2	Div2	2.92mm (K) female
3	Div4	2.92mm (K) female
4	Out	1.85mm (V) female


Port	Connector	Designation
а	2 mm Banana Jack	Functional Earth
b	Mini-USB	Control Interface
С	Power Jack 2.0 x 5.9 mm	Power
d	Mini Bushing EMI Filter	Fan+12 V
е	Mini Bushing EMI Filter	Fan Tacho
f	1 mm Soldering Pin	GND
g	Sliding Switch	Service


all dimensions in mm


For permanent mounting remove the heat sink from the module. In that case, please ensure that adequate cooling of the module is guaranteed. It is recommended to use thermal paste or a thermal gap pad for mounting.

Mechanical Drawing without Heat Sink

Pos	Port	Connector
1	ln	1.85mm (V) female
2	Div2	2.92mm (K) female
3	Div4	2.92mm (K) female
4	Out	1.85mm (V) female

Port	Connector	Designation
а	2 mm Banana Jack	Functional Earth
b	Mini-USB	Control Interface
С	Power Jack 2.0 x 5.9 mm	Power
d	Mini Bushing EMI Filter	Fan+12 V
е	Mini Bushing EMI Filter	Fan Tacho
f	1 mm Soldering Pin	GND
g	Sliding Switch	Service

all dimensions in mm

Please ensure that adequate cooling of the module is guaranteed.

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23 D | 12277 Berlin | Germany

+49 30 772 051 0

sales@shf-communication.com

www.shf-communication.com